Коэффициенты лобового сопротивления автомобилей таблица

СОПЕРНИК ВЕТРА

Коэффициенты лобового сопротивления автомобилей таблица

Соперник ветра

Вот с каким противником автомобиль имеет дело. Приопустим стекло, подставим ладонь ветру — ощутимо давит? Если менять угол, под которым ладонь атакует ветер, можно обнаружить и вертикальную силу — как на крыле самолета.

Силы вертикального и поперечного направлений, дестабилизирующие машину, важны не меньше сопротивления. Кому понравится автомобиль, на 250 км/ч выходящий из-под контроля! Он должен быть устойчивым, не рыскать, не «соскальзывать» в поворотах, при порывах бокового ветра, разъезде со встречной машиной, въезде в тоннель и т. п. Да еще иметь просторный салон при небольших габаритах и при этом отвечать эстетическим требованиям дизайнеров! Полностью рассчитать его обтекаемость, заранее все увязать, увы, невозможно. Машину доводят в аэродинамической трубе, затрачивая огромные деньги.

Между тем, мода заставляет людей покупать сомнительные «прибамбасы», влияющие на аэродинамику. Сечение псевдокрыла часто совсем не похоже на крыльевой профиль: нарисовавший его дизайнер думал только об изяществе линий! К счастью, большинство «жертв рекламы» быстрее 160–180 км/ч не ездит — и действие какого-нибудь безграмотного «антикрыла» мало ощутимо. Если же автомобиль быстроходнее, неосторожные игры с аэродинамическими предметами чреваты печальными последствиями.

Даже серьезные фирмы не застрахованы от ошибок. Помните первые шаги » Ауди ТТ»? Не сразу его «научили» крепко держаться за дорогу. Но у такой фирмы побольше возможностей устранять промахи, чем у частного владельца — у него в списке «расходных материалов» может оказаться жизнь.

Вычислить прижимающую силу крыла не просто: не владея основами этой науки, автомобилисты, случается, спорят до третьих петухов. Поэтому приведем простой пример из параллельной области техники. У бомбардировщика В-1В площадь крыла 181 м2. Взлетный вес — 216 тонн. Самолет сверхзвуковой, но взлетает-то при скорости меньше 300 км/ч. Значит, каждый квадратный метр крыла несет груз в 1,2 тонны. Но некоторые спортивные автомобили ездят и быстрее, — так что их обтекатели, спойлеры, антикрылья инженеры «доводят» весьма дотошно. Хорошее антикрыло площадью всего треть квадратного метра способно создать прижимающую силу в четыре центнера, а то и больше.

Но иной «гонщик» может купить высокоэффективное антикрыло, а поставить его неправильно — например чрезмерно вынесет назад. На высоких скоростях передняя ось машины разгружается, автомобиль может стать неуправляемым. Утешает, что зачастую «крыло» помещают в зону срыва («аэродинамическую тень» кузова), где оно практически не работает.

ЗАКОН «КВАДРАТА»

К счастью для загадочной русской души автомобилей, делающих 300 км/ч, у нас мало. Зато хватает тех, которым по плечу 180–200. А мысль о том, что «обвешанный» автомобиль на такой скорости может не послушаться руля, иные головы никогда не посещает. Зря что ли деньги уплачены на зависть соседям!

«Проколы» обтекаемости заявляют о себе громко лишь на высоких скоростях. Силы сопротивления воздуха растут пропорционально квадрату скорости потока — V2. Ведь затормаживая поток (например, плоским щитом, как на рис. 2), мы переводим его кинетическую энергию в дополнительное статическое давление. При плотности воздуха 1,3 кг/мз повышение давления от торможения потока («скоростной напор») составит 1,3.V2/2=0,65V2 Н/м2.

Чтобы определить силу давления потока на щит (то есть аэродинамическое сопротивление), остается лишь умножить полученное давление на площадь щита S.

Допустим, S=1,8 м2 (лобовая площадь сопротивления «Жигулей»). Тогда скоростям 50, 100, 150 и 200 км/ч соответствуют силы сопротивления 226, 903, 2031 и 3611 Н — закон «квадрата». Удвоив скорость,учетверяем силу.

Кстати, определение величины S (рис. 1) — не самая простая задача. Делают это с очень высокой точностью на лазерном стенде.

Квадратичная зависимость аэродинамической силы от скорости потока порой вводит нас в заблуждение. Например, проехав по маршруту туда и обратно со скоростью 90 км/ч, вы забыли о слабом (20 км/ч) ветре, дующем вдоль трассы. Но в одном случае поток бьет в лоб машине со скоростью 70 км/ч, а в другом — 110 км/ч! Силы сопротивления пропорциональны квадрату скорости, а мощность на ведущих колесах — кубу. В итоге средний расход топлива больше, чем при скорости 90 км/ч в штиль. Ни дать ни взять — бензин, унесенный ветром!

Управляя автомобилем, объективно оценить силу и направление ветра, дующего над дорогой, трудно. Общее правило: встречный ветер отнимает больше, чем «дает» попутный той же силы.

НЕ ТОЛЬКО «ЦЕ-ИКС»

Только ли скоростным напором определяется аэродинамическая сила? Оказывается, нет! Огромную роль играет форма тела, подставленного потоку (рис. 2). Встретив щит, воздух не станет бесконечно скапливаться перед ним (а) — он пойдет в обход препятствия, образуя за ним вихри (б). Дополнительные движения струй требуют затрат энергии, и аэродинамическое сопротивление плоского щита намного (примерно на 17%) больше того, что дало полное торможение потока! Значит, для получения истинных сил сопротивления следует умножить полученные раньше значения на 1,17. Вот этот коэффициент, учитывающий форму тела, называют коэффициентом аэродинамического сопротивления — Сх. Одно из наиболее удобообтекаемых тел — удлиненная «капля», для которой Сх=0,04.

Каков же Сх реального автомобиля? Даже у самых непритязательных начала ХХ века — около 0,8. У символа советской эпохи — «Жигулей» — получше: 0,52–0,53. Для сегодняшнего дня многовато.

А вот результаты продувок в аэродинамической трубе НТЦ ВАЗа автомобилей «десятого» семейства: 2110 — 0,33, 2111 — 0,36, 2112 — 0,34. Это на уровне очень приличных зарубежных машин данного класса. Правда, «обмылки» некоторым не нравятся. Но законы движения воздуха-то всюду одни и те же! Считаясь с ними, непросто создать внешне оригинальную машину. А если не очень считаться?

В России до сих пор популярны автомобили «самарского» семейства. После «классических» ВАЗов показалось, что стремительные «восьмерка» и «девятка» — огромный шаг вперед. На деле революции не получилось. Хотя Сх=0,47 все же меньше, чем 0,52, он гораздо выше, чем сегодня имеют небольшие машины «гольф-класса». Даже самая «навороченная» из «самар» — VAZ 2115 аэродинамически продвинулась недалеко: Сх=0,435. Впрочем, техника развивается: все больше появляется автомобилей, у которых отличная аэродинамика сочетается с броской внешностью.

Если кому-то любопытно, для чего мы вспомнили о Сх, заметим: фактическое сопротивление «десятки» (даже с учетом большей, чем у «классики», лобовой площади) при одинаковых скоростях на 33–34% ниже, чем у «Жигулей». Отсюда улучшение скоростных и динамических показателей.

ПО КИРПИЧИКУ

А из чего складывается величина Сх?

Первое — сопротивление давления или формы. Иногда это до 60% общих аэродинамических потерь. Поток, бьющий «в лоб» автомобиля, несколько уплотняется, затем струи расходятся. Позади «сольются» не сразу — здесь видна зона общего срыва с мелкими завихрениями воздуха. Движению машины препятствует повышенное давление воздуха спереди и пониженное сзади.

В некоторых случаях по краям скоса задней части кузова индуцируются мощные вихревые «трубки» (рис. 3): они еще больше понижают статическое давление и существенно увеличивают потери. Сделать плавно спускающуюся (в подражание крыльевому профилю) «корму» — нереально, особенно для автомобилей малых классов. Один из способов борьбы с вредными вихрями — преднамеренный срыв потока, например небольшим спойлером (как на фото 1, 2 и рис. 4). Шлейф срыва (темный «мешок» на фото) отнимает меньше энергии, чем мощные вихри. На небольших автомобилях такой прием используют особенно часто.

К сопротивлению формы можно отнести потери при обтекании выступающих деталей — зеркал, брызговиков, приоткрытого люка и т. д. Навешивая на машину модные прибамбасы, обув ее в широкие шины и т. п., Сх недолго увеличить процентов на 15.

Обладая некоторой вязкостью, воздух «прилипает» ко всем поверхностям машины — а этот тонкий слой частично притормаживает соседние и т. д. В результате потери от трения воздуха могут достигать 20% общих. Это справедливо, по крайней мере, для автомобилей с малым Сх — особенно немытых. Но владельцы УАЗа, КамАЗа, или «Хаммера» могут быть спокойны: эта техника к грязи индифферентна.

Наконец, есть внутренние потери, вызванные необходимостью охлаждать двигатель, тормоза, вентилировать и отапливать кузов.

Специалисты-аэродинамики изучают и множество других вопросов. Например, как ведет себя машина в условиях косого обдува (при боковом ветре): насколько устойчива, управляема и т. д. Важно также, какие силы действуют на кузов в вертикальном направлении, какие моменты относительно осей они создают. Ни на каких скоростях подъемная сила кузова не должна разгружать колеса — автомобиль не самолет, его задача надежно двигаться по дороге. Поэтому стремятся упорядочить воздушные потоки снизу автомобиля (от них зависит до 15% общего сопротивления). Не обойтись без аэродинамики при доводке машины с точки зрения экономичности, при выборе передаточных чисел трансмиссии и так далее. Не гнушается наука и мелкими вопросами вроде правильной работы «дворников», рационального отвода дождевой воды, уменьшения шума от стоек, уплотнителей и т. п. Перечень задач можно продолжать.

Рис. 1. Площадь лобового сопротивления S — то же, что площадь проекции машины на поперечную плоскость.

Рис. 2. Полное торможение потока плоским щитом без учета других видов движения воздуха — «а», реальная картина — «б».

Характер обтекания современного кузова. За багажником — «организованный» шлейф срыва. Больших вихрей нет.

Небольшой спойлер над задним стеклом обеспечил чистый, без лишних вихрей, срыв потока у универсала.

Рис. 3. Образование мощных вихрей — явление нежелательное. Увеличивает разрежение за «кормой» автомобиля и сопротивление воздуха, снижает нагруженность задней оси.

Продувка модели грузовика.

Рис. 4. Характерные аэродинамические элементы. Спойлер (интерцептор) — щиток той или иной формы, выдвинутый в поток воздуха с целью его срыва. За спойлером, в шлейфе срыва, давление воздуха снижено. Спойлер под передним бампером, ограничивая «продувку» кузова снизу, одновременно увеличивает нагрузку на переднюю ось. Очень логичен в паре с антикрылом над крышкой багажника, как у зеленой машины. Спойлер под задним бампером, срывая поток, может свести к минимуму образование мощных вихрей. Аналогично работает спойлер на перегибе крыши над задним стеклом красного автомобиля. А вот «мухобойка», срывая поток на капоте, понижает здесь давление. Эффект — уменьшение нагрузки на переднюю ось.

Важно понимать, что сочетание спойлера на задней кромке крыши и антикрыла над багажником лишено смысла. В шлейфе срыва антикрыло работает не лучше, чем парус в полный штиль. Хорошо еще, что вреда от него нет. Так что и в «украшательстве» надо знать меру!

Специалистам-аэродинамикам случается исследовать законы обтекания и живых объектов.

Коэффициенты лобового сопротивления автомобилей таблица

Коэффициент аэродинамического сопротивления

Коэффициент аэродинамического сопротивления (Cw) — безразмерная величина, отражающая отношение силы сопротивления воздуха движению автомобиля к силе сопротивления движению цилиндра:
Cw = Fauto / Fcylinder,
при условии, что наибольшее поперечное сечение автомобиля равно поперечному сечению цилиндра[источник не указан 1186 дней].
Другими словами, сила сопротивления воздуха, действующая на корпус автомобиля, равна силе, действующей на цилиндр с понижающим коэффициентом Cw:
Fauto = Cx * Fcylinder,
где Cw — безразмерный коэффициент, обычно меньший единицы (от С — coefficient, w — продольная ось цилиндра и автомобиля).
Cw не имеет единицы измерения и действует для всех геометрически подобных тел, вне зависимости от их конкретных размеров.
Чем меньше Cw, тем лучше проработана аэродинамика автомобиля. Для современных автомобилей Cw 6 лет Метки: просто так

Снижение расхода топлива, пожалуй, наиболее актуальная проблема в современном автомобилестроении. Расход этот зависит прежде всего от объективного фактора — различных сил сопротивления движению, на преодоление которых затрачивается энергия сгорания топлива. Уменьшение их — один из путей его экономии. Наша статья посвящена резервам, заключенным в улучшении аэродинамических свойств автомобиля.
В общем сопротивлении движению автомобиля аэродинамические силы могут составлять существенную часть. Если при езде по городскому циклу (средняя скорость 40—50 км/ч) они достигают 8%, при движении в пригородной зоне (средняя скорость 80—90 км/ч) — 29%, то на автострадах — 53%. Отметим, что чем выше скорость, тем быстрее растут потери «на ветер»: уже при 60 км/ч они отнимают больше энергии, чем любая другая составляющая. Дело в том, что мощность, расходуемая на преодоление аэродинамического сопротивления, пропорциональна кубу скорости; значит, если скорость удваивается, то мощность должна увеличиться в восемь раз.
Чтобы уяснить, как возникает и воздействует на автомобиль сопротивление воздуха, рассмотрим, из чего оно складывается. Взаимодействие воздуха и автомобиля можно представить как сумму сопротивлений: профильного, индуктивного, внутреннего, а также сопротивлений трения и выступов. Наибольший «вклад» (около 58%) приходится на профильное. Оно обусловлено самой формой кузова. Воздух, обтекающий автомобиль, как бы сжимается впереди него, создавая значительное положительное давление. Поток, идущий по верхней части кузова, неоднократно отрывается от его поверхности, что создает в этих местах области пониженного давления. В задней же части поток окончательно отрывается от кузова. Там образуется мощный вихревой след и область больших отрицательных давлений. Положительное давление впереди автомобиля и отрицательное сзади препятствуют движению, создавая сопротивление давлений, или профильное сопротивление воздуха.
Индуктивное сопротивление (8% в общем балансе) вызывается разностью давлений на верхнюю и нижнюю части кузова. В результате их взаимодействия возникает сила, отжимающая автомобиль от земли, — подъемная. Хотя она и сокращает сопротивление качению, ее влияние на ходовые качества машины в целом отрицательно — это уменьшение силы сцепления колес с дорогой, которое влечет за собой ухудшение управляемости.
Сопротивление выступов (13% всех потерь). Очевидно, что свой вклад в полное аэродинамическое сопротивление вносит любая выступающая деталь автомобиля (зеркало, антенна, ручки дверей и т. д.). Так, багажник на крыше при скорости 60 км/ч увеличивает его на 10—12%, из-за чего на 2—3% растет расход топлива. Специалисты ряда фирм считают, что только изменение подобных деталей может улучшить топливную экономичность на 3—4%.
Сопротивление трения (11% всех потерь) обусловлено «прилипанием» к поверхности кузова слоев воздуха, вследствие чего поток вблизи нее теряет скорость. Потери энергии на поверхностное трение зависят главным образом от качества отделки кузова. Во всяком случае, эксперименты показали, что если у нового полированного автомобиля оно составляет около 8% общего сопротивления воздуха, то у плохо покрашенного, с грубой поверхностью возрастает в 2—2,5 раза. В частности, поверхностное трение заметно увеличивается в случае, когда крыша обтянута модным гранулированным виниловым кожзаменителем.
Внутреннее сопротивление (10% всех потерь) возникает при прохождении воздуха через системы охлаждения и вентиляции. Природа этих потерь такова, что возможность снизить их в настоящее время весьма проблематична.
Количественной характеристикой суммарного аэродинамического сопротивления служит так называемый коэффициент лобового сопротивления — Сх, который, как правило, определяют экспериментальным путем. Для этого автомобиль или его уменьшенный макет устанавливают в аэродинамическую трубу и моделируют его обтекание воздушным потоком. Меньшую точность дают некоторые методы дорожных испытаний.
Коэффициент лобового сопротивления у легковых автомобилей, выпущенных разными фирмами в 70-х и 80-х годах, колеблется (см. таблицу) от 0,30 до 0,60.

Читайте также  В чем отличие коробки автомат от вариатора

Вернемся к вопросу о затратах мощности и топлива на преодоление сопротивления воздуха. Приведенный на вкладке график показывает, как влияет на них изменение коэффициента лобового сопротивления при разных скоростях… Теперь, когда мы представляем, что значит Сх для экономии топлива, небезынтересными окажутся и такие данные: дополнительные фары перед облицовкой радиатора увеличивают его на 0,04, грязезащитные фартуки у всех колес — на 0,03, выдвинутая антенна — на 0,02, наружное зеркало заднего вида — на 0,01, неубранные стеклоочистители — на 0,007. Все это дополнительное оборудование плюс багажник на крыше могут поднять суммарную величину Сх, скажем, для ВАЗ—2105 с 0,43 до 0,58, и это означает расход лишних 1—1,5 л бензина на 100 километров. Цифра достаточно убедительная для того, чтобы учитывать аэродинамические характеристики автомобиля как в эксплуатации, так и, прежде всего, на стадии проектирования…

Коэффициент лобового сопротивления Сх:
«Ауди-100» (0,30), ВАЗ-2101 (0,46), ВАЗ-2103 (0,45), ВАЗ-2105 (0,43), ГАЗ-20 (0,46), ГАЗ-24 (0,45), ГАЗ-24 (0,41), ЗАЗ-968 (0,48), «Москвич-2140» (0,41), СИМКА-1307 (0,38), «Ситроен-ЖСА-Икс-3» (0,32), «Ситроеи-ЦИкс» (0,35), «Фольксваген-жук» (0,60), «Фольксваген-гольф» (0,42), «Фольксваген-пассат» (0,38), «Форд-фиеста» (0,42).

Ф. УЗБЕКОВ, инженер («За Рулем» №4, 1983)

Литература:
Михайловский Е. Аэродинамика автомобиля. М., Машиностроение, 1973.
Павловский Я. Автомобильные кузова. М., Машиностроение, 1977.
«За рулем», 1978, № 1, № 7; 1981, № 4, № 8.
«Автомобильная промышленность», 1979, № 11.

Для решения поставленной задачи были проведены параметрические испытания крупномасштабной модели автомобиля в аэродинамической фубе. Модель имела полное геометрическое подобие с натурным автомобилем. Для соблюдения кинематического подобия, параметрические испытания проводились в зоне «автомодельное™», где аэродинамические характеристики модели практически не зависят от числа Рсйнольдса (Re). Методика модельных аэродинамических исследований включала получение опытных данных, устанавливающих влияние каждого из рассмотренных выше параметров кузова на величину коэффициента Сд. модели автомобиля.

Результаты проведенных аэродинамических испытаний представлены ниже в виде графических зависимостей.

На рисунках 6.7 — 6.11 представлены зависимости снижения коэффициента сопротивления Сх модели автомобиля от угла наклона облицовки радиатора, крышки капота, ветрового стекла, радиуса закругления фронтальных кромок капота и удлинения кузова.

Рис. 6.7. Зависимость приращения коэффициента Сх автомобиля от угла наклона облицовки радиатора

Рис. 6.Н. Зависимость приращения коэффициента (автомобиля от угла наклона крышки капота

Рис. 6.11. Зависимость приращения коэффициента Сх автомобиля от его относительного удлинения

Па рисунке 6.12 приведена зависимость коэффициента Сх автомобиля от угла наклона задней панели кузова.

Рис. 6.12. Зависимость коэффициента С, автомобиля от угла наклона задней панели кузова: линия — расчет. точки — эксперимент

Имеющие место на рис. 6.12 характерные точки перегиба кривой, зависимости коэффициента аэродинамического сопротивления от угла наклона задней панели кузова, соответствуют строго зафиксированным значениям угла у лишь тогда, когда переход от крыши к поверхности задней панели выполнен в виде острой кромки (без закругления). Если же этот переход выполнен со округлением радиусом R’k, то переходная область, характеризующаяся пульсирующим изменением положения линии отрыва. перемещающейся с задней кромки крыши на нижнюю кромку задней наклонной панели, ограничивается диапазоном 25° 0) углом тангенса — установке

кузова таким образом, что минимальный дорожный просвет приходится на заднюю ось, наблюдается интенсивное торможение потока в кормовой части подднищевой зоны, вызывающее повышение аэродинамического сопротивления автомобиля и действующей на задок подъемной силы. Размещение кузова горизонтально относительно поверхности дороги с увеличенным дорожным просветом делает эпюру торможения скорости равномерной и несколько улучшает характер протекания потока в подднищевой зоне автомобиля. Однако наиболее правильным для обеспечения оптимального течения потока под автомобилем является расположение кузова с отрицательным (а Читайте также: Подключение водонагревателя без заземления

ПРАКТИЧЕСКАЯ АЭРОДИНАМИКА «За Рулем» №4, 1983

Снижение расхода топлива, пожалуй, наиболее актуальная проблема в современном автомобилестроении. Расход этот зависит прежде всего от объективного фактора — различных сил сопротивления движению, на преодоление которых затрачивается энергия сгорания топлива. Уменьшение их — один из путей его экономии. Наша статья посвящена резервам, заключенным в улучшении аэродинамических свойств автомобиля.
В общем сопротивлении движению автомобиля аэродинамические силы могут составлять существенную часть. Если при езде по городскому циклу (средняя скорость 40—50 км/ч) они достигают 8%, при движении в пригородной зоне (средняя скорость 80—90 км/ч) — 29%, то на автострадах — 53%. Отметим, что чем выше скорость, тем быстрее растут потери «на ветер»: уже при 60 км/ч они отнимают больше энергии, чем любая другая составляющая. Дело в том, что мощность, расходуемая на преодоление аэродинамического сопротивления, пропорциональна кубу скорости; значит, если скорость удваивается, то мощность должна увеличиться в восемь раз.
Чтобы уяснить, как возникает и воздействует на автомобиль сопротивление воздуха, рассмотрим, из чего оно складывается. Взаимодействие воздуха и автомобиля можно представить как сумму сопротивлений: профильного, индуктивного, внутреннего, а также сопротивлений трения и выступов. Наибольший «вклад» (около 58%) приходится на профильное. Оно обусловлено самой формой кузова. Воздух, обтекающий автомобиль, как бы сжимается впереди него, создавая значительное положительное давление. Поток, идущий по верхней части кузова, неоднократно отрывается от его поверхности, что создает в этих местах области пониженного давления. В задней же части поток окончательно отрывается от кузова. Там образуется мощный вихревой след и область больших отрицательных давлений. Положительное давление впереди автомобиля и отрицательное сзади препятствуют движению, создавая сопротивление давлений, или профильное сопротивление воздуха.
Индуктивное сопротивление (8% в общем балансе) вызывается разностью давлений на верхнюю и нижнюю части кузова. В результате их взаимодействия возникает сила, отжимающая автомобиль от земли, — подъемная. Хотя она и сокращает сопротивление качению, ее влияние на ходовые качества машины в целом отрицательно — это уменьшение силы сцепления колес с дорогой, которое влечет за собой ухудшение управляемости.
Сопротивление выступов (13% всех потерь). Очевидно, что свой вклад в полное аэродинамическое сопротивление вносит любая выступающая деталь автомобиля (зеркало, антенна, ручки дверей и т. д.). Так, багажник на крыше при скорости 60 км/ч увеличивает его на 10—12%, из-за чего на 2—3% растет расход топлива. Специалисты ряда фирм считают, что только изменение подобных деталей может улучшить топливную экономичность на 3—4%.
Сопротивление трения (11% всех потерь) обусловлено «прилипанием» к поверхности кузова слоев воздуха, вследствие чего поток вблизи нее теряет скорость. Потери энергии на поверхностное трение зависят главным образом от качества отделки кузова. Во всяком случае, эксперименты показали, что если у нового полированного автомобиля оно составляет около 8% общего сопротивления воздуха, то у плохо покрашенного, с грубой поверхностью возрастает в 2—2,5 раза. В частности, поверхностное трение заметно увеличивается в случае, когда крыша обтянута модным гранулированным виниловым кожзаменителем.
Внутреннее сопротивление (10% всех потерь) возникает при прохождении воздуха через системы охлаждения и вентиляции. Природа этих потерь такова, что возможность снизить их в настоящее время весьма проблематична.
Количественной характеристикой суммарного аэродинамического сопротивления служит так называемый коэффициент лобового сопротивления — Сх, который, как правило, определяют экспериментальным путем. Для этого автомобиль или его уменьшенный макет устанавливают в аэродинамическую трубу и моделируют его обтекание воздушным потоком. Меньшую точность дают некоторые методы дорожных испытаний.
Коэффициент лобового сопротивления у легковых автомобилей, выпущенных разными фирмами в 70-х и 80-х годах, колеблется (см. таблицу) от 0,30 до 0,60.

В среднем он составляет в настоящее время 0,43. Для сравнения: среднее значение Сх у машин выпуска 1938 года — 0,58. Наименьшим коэффициентом отличаются автомобили, предназначенные для установления рекордов скорости — 0,2 («Звезда—6», СССР) и 0,15 («Фольксваген-АРФВ», ФРГ).

Вернемся к вопросу о затратах мощности и топлива на преодоление сопротивления воздуха. Приведенный на вкладке график показывает, как влияет на них изменение коэффициента лобового сопротивления при разных скоростях… Теперь, когда мы представляем, что значит Сх для экономии топлива, небезынтересными окажутся и такие данные: дополнительные фары перед облицовкой радиатора увеличивают его на 0,04, грязезащитные фартуки у всех колес — на 0,03, выдвинутая антенна — на 0,02, наружное зеркало заднего вида — на 0,01, неубранные стеклоочистители — на 0,007. Все это дополнительное оборудование плюс багажник на крыше могут поднять суммарную величину Сх, скажем, для ВАЗ—2105 с 0,43 до 0,58, и это означает расход лишних 1—1,5 л бензина на 100 километров. Цифра достаточно убедительная для того, чтобы учитывать аэродинамические характеристики автомобиля как в эксплуатации, так и, прежде всего, на стадии проектирования…

Аэродинамические исследования ведут не только с целью снизить расход топлива. Они помогают добиваться прогресса в области активной безопасности автомобиля, положительно влиять и на такие составляющие комфортабельности, как эффективность вентиляции, шум в салоне, загрязнение стекол и фонарей.
Результаты перспективных разработок говорят о больших резервах, скрытых в улучшении аэродинамики автомобиля. Так, известные итальянские кузовные фирмы «Пининфарина» и «Итал Дизайн» создали несколько экспериментальных моделей, имеющих Сх 0,23—0,26…
Важную роль в улучшении аэродинамических качеств играют различные обтекатели, дефлекторы («За рулем», 1982, № 8), спойлеры, антикрылья, юбки («За рулем», 1981, № 4).

Наиболее широко на легковых автомобилях в последнее время применяется передний спойлер. Это профилированный щиток — чаще всего продолжение передней панели кузова вниз, под бампер, или элемент самого бампера. Он служит для уменьшения нежелательной разгрузки колес, вызываемой повышенным давлением, которое образуется в зоне между днищем автомобиля и полотном дороги при движении. На скорости около 100 км/ч отрицательная (направленная вверх) нагрузка на передние колеса может превысить 100 кгс. В результате ухудшаются характеристики прямолинейного движения («держание» дороги), а также снижается боковая устойчивость при поворотах с большими скоростями.
Кроме того, протекание воздуха под автомобилем сопровождается значительным ростом сопротивления выступающих деталей подвески, системы выпуска и других — до 20% общего профильного сопротивления. Очевидно, идеальным было бы ровное или закрытое щитом днище, но практически достичь этого невозможно, хотя частично подобные нежелательные эффекты можно устранить установкой переднего спойлера. Изменяя направление потоков, обтекающих нижнюю часть машины, он создает под кузовом разрежение. Минимум же полного сопротивления достигается тогда, когда допустимая максимальная высота спойлера обеспечивает уменьшение аэродинамического сопротивления расположенных снизу деталей настолько, насколько увеличится сопротивление кузова. Испытания показали, однако, что установка спойлера может ухудшить охлаждение двигателя, системы выпуска, агрегатов трансмиссии. Вот почему его подбор — сложная задача, решаемая на основе многочисленных экспериментов для каждой конкретной модели автомобиля. Хорошо подобранный спойлер может снизить Сх на 6—7%.
Конструкторы ищут возможности использовать аэродинамические устройства на серийных машинах. Так, на особо скоростных моделях («Порше», «Альфа-ромео» и др.) ставят антикрылья. На чем основан их эффект? Если крыло самолета создает подъемную силу, то, перевернув его (отсюда и приставка «анти»), получим силу прижимающую, которой обычно так недостает автомобилю. Помимо увеличения прижимающей силы антикрыло на крышке багажника так организует поток воздуха за автомобилем, что снижает лобовое сопротивление примерно на 6%.
Наряду с поисками наивыгоднеишего (в отношении снижения аэродинамических потерь) сочетания элементов кузова конструкторы уделяют серьезное внимание снижению потерь вокруг отдельных выступающих деталей.
Выдвижные фары («Порше-928», «Мазда-РИкс-7», «Матра-багира»), убирающиеся в «пазуху» между задней кромкой капота и лобовым стеклом «дворники» (ГАЗ—14, «Мерседес-Бенц-С», «Ровер-3500», «Додж-магнум-78»), отказ от выступающих дверных ручек («Рено-5», «ФИАТ-панда», «Рено-фуэго») помогают сгладить обводы кузова. Немалое значение для снижения общего аэродинамического сопротивления имеет замена выступающих водосточных желобов над дверными проемами водосгонными ребрами на крыше, как сделано у «Рено-18», «Мицубиси-кольт», «Хонде-аккорд».
В заключение можно сказать, что внешний облик автомобиля претерпел в последнее время серьезные изменения, обусловленные прежде всего стремлением полнее учесть особенности обтекания его воздухом. Улучшение аэродинамики автомобиля способствует повышению динамических качеств и при минимуме конструктивных изменений дает заметную экономию топлива. А потому можно с уверенностью предсказать прогресс в области аэродинамики. По прогнозам, к 1990 году аэродинамическое сопротивление автомобиля снизится в среднем на 10%, что даст уменьшение расхода бензина на 3,5%, а дизельного топлива — на 4,5%. В перспективе считают возможным сократить таким путем расход топлива на 15%.

Коэффициент лобового сопротивления Сх:
«Ауди-100» (0,30), ВАЗ-2101 (0,46), ВАЗ-2103 (0,45), ВАЗ-2105 (0,43), ГАЗ-20 (0,46), ГАЗ-24 (0,45), ГАЗ-24 (0,41), ЗАЗ-968 (0,48), «Москвич-2140» (0,41), СИМКА-1307 (0,38), «Ситроен-ЖСА-Икс-3» (0,32), «Ситроеи-ЦИкс» (0,35), «Фольксваген-жук» (0,60), «Фольксваген-гольф» (0,42), «Фольксваген-пассат» (0,38), «Форд-фиеста» (0,42).

Ф. УЗБЕКОВ, инженер («За Рулем» №4, 1983)

Литература:
Михайловский Е. Аэродинамика автомобиля. М., Машиностроение, 1973.
Павловский Я. Автомобильные кузова. М., Машиностроение, 1977.
«За рулем», 1978, № 1, № 7; 1981, № 4, № 8.
«Автомобильная промышленность», 1979, № 11.

Аэродинамическое сопротивление автомобиля

В процессе проектирования и создания конструкторами очень тщательно прорабатывается аэродинамика автомобиля, поскольку она оказывает значительное влияние на технические показатели модели.

При движении автомобиля большая часть мощности силовой установки уходит на преодоление сопротивления, создаваемого воздухом. И правильно созданная аэродинамика автомобиля позволяет уменьшить это сопротивление, а значит на борьбу с противодействием находящего воздушного потока потребуется затратить меньше мощности, и соответственно – топлива.

Измерение аэродинамики автомобиля проводится для изучения сил, создаваемых воздушным потоком и воздействующих на транспортное средство. И таких сил несколько – подъемные и боковые, а также лобовое сопротивление.

Лобовое сопротивление и коэффициент Сх

По большей части все работы с кузовом авто направлены на преодоление лобового сопротивления, поскольку именно эта сила самая значительная.

Читайте также  Почему от автомобиля бьет током

Движение потоков воздуха

За основу при расчетах берется сила сопротивления воздуха. Для вычисления результата используются такие данные как плотность воздуха, площадь поперечной проекции авто, коэффициент аэродинамического сопротивления (Сх) — это важнейший показатель в аэродинамике автомобиля. При этом на силу сопротивления в значительной мере влияет также скорость движения. Так, увеличение скорости вдвое будет сопровождаться повышением сопротивлением в 4 раза. Скорость один из мощных факторов увеличения расхода.

Например, для хорошо обтекаемого авто с площадью проекции 2 м 2 и коэффициентом 0,3 при движении на скорости 60 км/ч для преодоления сопротивления воздуха необходимо 2,4 л.с., а при скорости 120 км/ч уже 19,1 л.с. Разница расхода топлива при таких условиях достигает 30% на 100 км.

Если вам, в данный момент, требуется максимальная экономия топлива, необходимо придерживаться постоянной скорости около 60 км/ч. В этом режиме движения расход будет минимальным даже у авто с большим Cx.

Рассмотрим все по-простому. У воздуха есть своя плотность, причем немалая. При движении автомобилю приходится проходить через имеющиеся воздушные массы, при этом создается поток, который обтекает кузов. И чем легче авто будет «резать» воздушную массу, тем меньше он затратит на это энергии.

Но не все так просто. Во время движения перед авто создается область увеличенного давления (машина сжимает воздушную массу), то есть спереди образуется такой себе невидимый барьер, осложняющий «разрезание» воздушной массы.

Также после обтекания кузова происходит отрыв воздушного потока от поверхности, что становиться причиной появления завихрений и разрежения за авто. В сочетании с повышенным давлением возникающее разрежение еще больше увеличивает сопротивление.

Поскольку повлиять на плотность воздуха невозможно, то конструкторам остается только вносить коррективы в две другие расчетные составляющие – площадь авто и коэффициент аэродинамического сопротивления.

Но уменьшить проекцию авто не представляется особо возможным без ущерба для полезных пространств кузова (просто невозможно сделать авто меньше, чем он есть), поэтому остается только изменение коэффициента Сх.

Этот коэффициент устанавливается экспериментальным путем (в аэродинамической трубе) и характеризует он соотношение лобового сопротивления к скоростному напору и площади поперечного сечения кузова. Величина его безразмерная.

Наименьший коэффициент аэродинамического сопротивления имеет каплевидное тело. При движении в воздушной массе такое тело плавно перед собой разводит поток, не создавая области повышенного давления, а имеющийся «хвост» позволяет за собой сомкнуть поток без обрывов и завихрений, то есть разрежение тоже отсутствует. Получается, что воздух просто обтекает тело, создавая минимальное сопротивление. Для такого тела коэффициент Сх составляет всего 0,05.

Конструкторам, работая с аэродинамикой автомобиля добиться, таких показателей пока не удается. И все потому, что при движении сопротивление создается несколькими факторами:

  • Формой кузова;
  • Трением потока о поверхности при обтекании;
  • Попаданием потока в подкапотное пространство и салон.

Поэтому для современных авто коэффициент аэродинамического сопротивления считается отличным, если его значение ниже 0,3. К примеру, у Peugeot 308 коэффициент составляет 0,29, у Audi A2 он равен 0,25, а у Toyota Prius – 0,26. Но стоит отметить, что это расчетные показатели в идеальных условиях. На практике же во время движения на авто воздействуют множество разнообразных факторов, которые негативным образом сказываются на сопротивлении кузова.

Примечательно, что на коэффициент оказывает наибольшее влияние не передок авто, а его задняя часть. И виной этому становится создание разрежения и завихрений в результате отрыва потока от кузова. Поэтому конструкторы по большей части занимаются приданием необходимой формы именно задней части.

Коэффициент сопротивления Volkswagen XL1 составляет всего 0,19

Снизить коэффициент Сх позволяет также уменьшение количества выступающих частей, причем везде на авто (бока, крыша, днище, передок), а тем элементам, которые не удается убрать с поверхности придается максимально возможная обтекаемая форма.

Подъемная и прижимная сила

В результате неравномерного обтекания потоком воздуха автомобиля с разных сторон возникает разница в скорости его движения.

Действующие подъемная и прижимная силы

Автомобиль движется и рассекает поток воздуха, при этом часть этого потока уходит под авто и проходит под днищем, то есть движется практически по прямой. А вот верхней части потока приходится повторять форму кузова, и ей приходится проходить большее расстояние. Из-за этого возникает разница в скорости воздуха – верхняя часть движется быстрее нижней, проходящей под авто. А поскольку увеличение скорости сопровождается снижением давления, то под днищем образуется зона повышенного давления, которая приподнимает машину.

Проблем добавляет и лобовое сопротивление. Область повышенного давления воздушной массы перед машиной прижимает передок к дороге, в то время как разрежение и завихрения позади наоборот – способствуют приподнятию кузова. Подъемная сила, как и лобовое сопротивление, возрастает при увеличении скорости движения.

Но эта сила может оказывать и положительное действие. При внесении корректив в конструкцию авто возможно преобразование подъемной силы в прижимную, которая будет обеспечивать лучшее сцепление с дорогой, устойчивость авто, его управляемость на высоких скоростях.

При этом для получения прижимной силы не требуется каких-либо отдельных решений. Все разработки, направленные на снижение коэффициента Сх также сказываются и на прижиме. К примеру, оптимизация формы задней части приводит к уменьшению завихрений и разрежения, из-за чего подъемная сила тоже снижается, а прижимная — повышается. Установка заднего спойлера действует таким же образом.

Уменьшение завихрений при установке спойлера

Боковые же силы при установлении аэродинамики автомобиля, особо в расчет не берутся, в силу того, что они не постоянны, а также значительного влияния на показатели авто не оказывают.

Но это все теория аэродинамики автомобиля. На практике все можно пояснить одним предложением — чем хуже аэродинамика, тем выше расход топлива.

Что ещё влияет на аэродинамику?

Конечно, конструкторы стараются по максимуму снизить сопротивление авто при движении и повысить прижимную силу. Но особенности эксплуатации авто и свой взгляд автовладельцев на внешние особенности машины вносят свои коррективы, причем в некоторых случаях – значительны.

Аэродинамическое сопротивление разных автомобилей в зависимости от скорости

К примеру, установка багажника на крышу, даже с аэродинамической формой увеличивает поперечную проекцию авто и сильно влияет на обтекаемость, это сразу сказывается на потреблении топлива.

Также расход повышается от езды с открытыми окнами и люком, использование защитных и декоративных обвесов, перевозка негабаритных грузов, выступающих за авто, нарушение положения конструктивных элементов, расположенных под днищем, повышение клиренса.

Но автовладелец также может и внести коррективы, которые положительно повлияют на аэродинамику автомобиля. К ним относится использование аэродинамических обвесов, установка спойлера, уменьшение клиренса.

Коэффициенты лобового сопротивления автомобилей таблица

Далее — подборка самых аэродинамически эффективных машин за всю историю автомобилестроения, коэффициент Cx которых ниже 0,2!

Основы автомобильной аэродинамики

Задача дизайнеров — умело формировать отдельные части кузова, чтобы компенсировать зоны турбулентности и отслоения воздуха. Стоит отметить, насколько важно, чтобы различные части взаимодействовали должным образом. Только правильно подобранные соотношения между ними приводят к низкому коэффициенту сопротивления воздуха «Сх». Один из приемов, позволяющих добиться правильного обтекания крыши — это ее наклон. Увеличение наклона снижает коэффициент лобового сопротивления. Однако, когда это применяется, автомобиль имеет большую лобовую площадь, поэтому общее значение сопротивления может увеличиваться. Альтернативой является снижение линии крыши спереди и сзади, но недостатком этого будет ограничение видимости. После многих анализов некоторые конструкции этого типа запускаются в серийное производство. Самыми популярными автомобилями, использующими это решение, являются VW Passat B5 или Audi A6 C5 .

Toyota Prius III (XW30)

Приоритетом при создании автомобиля было достижение минимально возможного расхода топлива, поэтому силуэт Prius подчинен принципам аэродинамики. Клиновидная передняя часть и пологие линии крыши и двери багажного отделения делают внешний вид этого автомобиля очень футуристичным. К стилистическим «курьезам» можно отнести и разделенное заднее стекло, для улучшения обзорности в вертикальной части двери багажника установили небольшое стекло, которое, правда, довольно быстро пачкается при движении по мокрой дороге. Плюсы такой формы кузова:

  • Низкий расход топлива;
  • Компактность.
  • Трансмиссия Prius состоит из 1,8-литрового бензинового двигателя мощностью 99 л.с. и электродвигателя мощностью 80 л.с. Суммарная мощность системы составляет 136 л.с. Эти параметры позволяют ему разгоняться с 0 до 100 км / ч за 10,4 секунды и достигать максимальных 180 км / ч. Многие водители жалуются, что гибрид воет при разгоне. На самом деле автомобиль с бесступенчатой трансмиссией ведет себя иначе, чем тот, который оснащен классическим «автоматом», но через 2-3 дня езды шум перестает беспокоить, и вы можете ощутить исключительную плавность вождения и незаметное переключение привода с электрического двигателя на двигатель внутреннего сгорания.

    Opel Calibra

    Конструкторам и дизайнерам Opel удалось создать не только вневременной кузов, практически не имеющий взаимозаменяемых компонентов, но и достичь мастерства в аэродинамике. Коэффициент CX составил всего 0,26! На тот момент это был лучший результат в этой области. Достоинства автомобиля:

    • Дизайн кузова;
    • Динамика;
    • Качество сборки.

    На протяжении всего периода производства Opel Calibra предлагался с 2-литровым 8-клапанным бензиновым двигателем мощностью 115 л.с. С самого начала производства покупатели могли также приобрести версию с 2-литровым двигателем, оснащенную 16-клапанной головкой. Он имел максимальную мощность 150 л.с. В 1994 году его модернизировали, и его мощность снизили до 136 л.с. Однако этот агрегат не рекомендуется из-за часто трескающихся прокладок под головкой и даже самих головок.

    В 1992 году линейка была расширена самой мощной версией с 2,0-литровым двигателем с турбонаддувом мощностью 204 л.с. Автомобиль оснащался 6-ступенчатой ​​механической коробкой передач и полным приводом. Calibra 2.0 Turbo 4×4 разгоняется до 100 км / ч за 6,8 с.

    Hyundai Sonata VI (YF)

    Кабина Hyundai Sonata длиной 4,8 м (с колесной базой 2,73 м) предлагает вместительность автомобиля среднего размера. В этой категории машину можно сравнить с Audi A6, Skoda Superb или Mercedes E-Class, она просторнее своих конкурентов из Японии. Низкая крыша и обтекаемый передний бампер обеспечивают неплохую аэродинамику. Какие есть двигатели?

    Автомобиль на вторичном рынке можно приобрести с одной из трех версий двигателя. Каждый предлагает что-то совершенно другое, основной двигатель бензин с объемом 2,0 литра и 150 л.с. На холостом ходу, расходует достаточно топлива (10-14 л / 100 км). По данным каталога, до сотни разгоняется за 8,9 секунды, но в сочетании с АКПП кажется вялой.

    Opel Astra K

    В 1989 году Opel представил миру Calibra , спортивное купе с сенсационным Cx-фактором 0,26 . Этот результат, как показала история, нелегко достичь, потому что такие проблемы, как безопасность автомобиля, его ходовые качества, охлаждение его отдельных компонентов или конструкция, ограничивают снижение коэффициента. Но благодаря современным техническим мерам его можно улучшить, это доказали инженеры Opel, представив Astra K. Размеры нового кузова:

    • Длина 4370 мм.;
    • Ширина 1809 мм.;
    • Высота 1485 мм.

    Полностью активная заслонка оказывает значительное влияние на аэродинамику автомобиля, поскольку ее роль заключается в закрытии как верхней, так и нижней части решетки радиатора. Интеллектуальный механизм управляет независимым открытием и закрытием нижних и верхних воздухозаборников с учетом тепловых, электрических и аэродинамических факторов. Таким образом, это должно привести к снижению расхода топлива. Например, снижение сопротивления воздуха на 10% может снизить расход топлива примерно на 2% или до 5% при движении со скоростью 130 км / ч. Кроме того, более низкое аэродинамическое сопротивление должно положительно сказаться на уровне шума, производимого автомобилем при движении на более высоких скоростях.

    Как меняют аэродинамику автомобиля?

    Задача специалистов по аэродинамике состоит в уменьшении паразитных сил и моментов (Рх, Рz, Му, Мх и Мz). Добиться можно с помощью дополнительных аэродинамических элементов, что ведет к увеличению площади миделя и как следствие – к увеличению силы лобового сопротивления. Тупик? Нет, оказывается, грамотно сконструированные и тщательно продутые в аэродинамической трубе элементы позволяют уменьшить Сх! Что это за устройства? Обычно при слове обвес речь идет о бамперах, порогах, спойлерах и антикрыльях.

    Антикрыло. Создано для борьбы с подъемной силой. Первостепенная задача – создать прижимную силу, чтобы колеса не теряли контакт с дорогой ни при каких условиях. Взгляните на болиды Ф1. Вот где антикрылья – усилия работы специалистов по аэродинамике! Но перебарщивать с размерами нельзя – резко растет аэродинамическое сопротивление, а значит – падает скорость, увеличивается расход топлива. Практически на всех спортивных автомобилях рабочая часть крыла выполнена регулируемой для возможности изменения угла атаки и возможности настройки.

    Парктроник – главный помощник автовладельца. Устройство и монтаж

    Спойлер (от spoil — портить). Аэродинамический элемент с одной рабочей поверхностью для изменения направления движения воздушного потока. Основная задача «правильного» спойлера – организация безотрывного и «плавного» обтекания воздушным потоком всей поверхности автомобиля, что повышает устойчивости при движении с высокими скоростями. Спойлер может бороться с подъемной силой, отсюда его сложные формы. Но эта деталь всегда примыкает к кузову автомобиля. По большому счету, бамперы и пороги это тоже большие спойлеры.

    Спойлер и антикрыло – основные, но не единственные элементы, улучшающие аэродинамику. Если заглянуть под днище современного авто, то увидим большое количество специальных щитков. Их задача – уменьшить сопротивление, исключить завихрения и направление потока в нужном направлении. Иногда проработка днища дает потрясающие результаты.

    Диффузор. Дальше всех пошли спортсмены – они решили присосать автомобиль к трассе! Появились болиды с днищем, имитирующим «трубку Вентури» – создающие резкий рост скорости воздушного потока под машиной. В результате создавалась мощная прижимная сила. Плодами этого открытия норовит воспользоваться каждый автопроизводитель: диффузоры, обеспечивающие ускорение потока, появляются в задней части гражданских машин.

    Проблема, что для максимально эффективной реализации т.н. «граунд-эффекта» нужны по возможности плоское днище и минимальный дорожный просвет. Если строители спортивных машин могут это позволить, то, к примеру, на Evolution диффузор служит скорее украшением, чем полноценным аэродинамическим элементом.

    Вискомуфта (вязкостная муфта). Принцип работы и устройство

    Удаление

    Багажник на крыше

    Багажник является общей чертой во многих внедорожниках и универсал автомобилей. Багажники на крыше очень полезны для хранения дополнительных вещей в автомобиле, но они также увеличивают площадь передней части автомобиля и увеличивают коэффициент лобового сопротивления. Это связано с тем, что воздух проходит через верхнюю часть автомобиля, следуя плавным линиям капота и лобового стекла, затем сталкивается с багажником на крыше и вызывает турбулентность. Удаление этой части привело к повышению эффективности использования топлива в нескольких исследованиях.

    Читайте также  Проклейка дверей автомобиля шумоизоляцией

    Изготовление

    Колпаки на колеса

    Воздушные завесы

    Воздушные завесы отводят воздушный поток из прорезей в корпусе и направляют его к внешним краям колесных арок.

    Блок частичной решетки

    Передняя решетка автомобиля используется для направления воздуха через радиатор. В обтекаемой конструкции воздух обтекает автомобиль, а не проходит сквозь него; тем не менее, решетка транспортного средства перенаправляет воздушный поток вокруг транспортного средства через транспортное средство, что затем увеличивает сопротивление. Чтобы уменьшить это воздействие, часто используется решетчатый блок. Блок решетки закрывает часть или всю переднюю решетку автомобиля. В большинстве высокоэффективных моделей или в автомобилях с низким коэффициентом лобового сопротивления очень маленькая решетка радиатора уже встроена в конструкцию автомобиля, что устраняет необходимость в блоке решетки. Решетка в большинстве серийных автомобилей обычно предназначена для максимального увеличения потока воздуха через радиатор на выходе в моторный отсек. Такая конструкция может фактически создать слишком большой поток воздуха в моторный отсек, препятствуя его своевременному прогреву, и в таких случаях используется блок решетки радиатора для увеличения производительности двигателя и одновременного уменьшения сопротивления транспортного средства.

    Под лотком

    Нижняя часть автомобиля часто задерживает воздух в различных местах и ​​создает турбулентность вокруг автомобиля. В большинстве гоночных автомобилей это устраняется путем покрытия всей нижней части автомобиля так называемым поддоном. Этот лоток предотвращает попадание воздуха под автомобиль и снижает сопротивление.

    Юбки Fender

    Доработанный передний бампер

    Лодки и камбаки

    Типичные коэффициенты лобового сопротивления

    Средний современный автомобиль достигает коэффициента лобового сопротивления от 0,25 до 0,3. Внедорожники с их обычно квадратными формами обычно достигают C
    d
    = 0,35–0,45. На коэффициент лобового сопротивления транспортного средства влияет форма кузова транспортного средства. Различные другие характеристики также влияют на коэффициент лобового сопротивления и учитываются в этих примерах. Некоторые спортивные автомобили имеют удивительно высокий коэффициент аэродинамического сопротивления (например, Ariel Atom, равный 0,40), но это делается для компенсации подъемной силы, создаваемой автомобилем, в то время как другие используют аэродинамику в своих интересах для увеличения скорости и, как следствие, имеют гораздо более низкую скорость. коэффициенты лобового сопротивления.

    Прижимная сила

    Каких-либо специальных мер для борьбы с этим явлением конструкторам обычных серийных автомобилей выдумывать не приходится, так как то, что делается для улучшения обтекаемости, одновременно увеличивает прижимную силу. Например, оптимизация задней части уменьшает зону разряжения за автомобилем, а значит и снижает подъемную силу. Выравнивание днища не только уменьшает сопротивление движению воздуха, но и повышает скорость потока и, следовательно, снижает давление под автомобилем. А это, в свою очередь, приводит к уменьшению подъемной силы. Точно так же две задачи выполняет и задний спойлер. Он не только уменьшает вихреобразование, улучшая Сх, но и одновременно прижимает автомобиль к дороге за счет отталкивающегося от него потока воздуха. Иногда задний спойлер предназначают исключительно для увеличения прижимной силы. В этом случае он имеет большие размеры и наклон или делается выдвижным, вступая в работу только на высоких скоростях.

    Что такое аэродинамика автомобиля и как это работает?

    Рассказываем о том, что такое аэродинамика, как встречные потоки воздуха могут вмешаться в управление автомобилем, и как работают спойлеры.

      16.09.2021
    • / Полезное , Как это устроено
    • / Анна Криворучко

    Спойлеры, сплиттеры, воздухозаборники, обвесы… Это лишь малая часть тех «украшений», которые наводнили наши улицы в нулевых годах. Пожалуй, тогда в России настала «золотая» эпоха народного автомобильного тюнинга, и безумные антикрылья вырастали даже там, где им, кажется, совсем не место. Об их истинном предназначении догадывались единицы, а просчитать и установить аэродинамические элементы так, чтобы они выполняли свою прямую функцию, было под силу лишь самым заумным инженерам сопроматчикам.

    Сейчас технологии, позволяющие «просчитать» машину в несколько кликов, стали доступнее. Появилось достаточно точное компьютерное моделирование, а аэродинамические трубы больше не ассоциируются только с космической промышленностью. Первопроходцами в области автомобильных аэродинамических изысканий, как всегда, стали спортивные команды, но очень скоро и производители серийных авто присмотрелись к результатам исследований и переняли опыт просветлённых товарищей. Фигурное прорезание воздуха — целое искусство и речь здесь не только о приятных глазу формах, но и о том, что можно ощутить только в движении.

    Оказывается, аэродинамика может повлиять и на шум в машине, и на пресловутый разгон 0-100 км/ч, и даже на расход горючего. Как это работает? Давайте разберёмся вместе.

    Коэффициент лобового сопротивления

    Оказывается, воздух — субстанция капризная и непредсказуемая. В безветренную погоду о его существовании можно даже забыть, но всё меняется, когда вы начинаете двигаться. Невесомый газ будет превращаться практически в кисель по мере того, как вы будете ускоряться. Автомобиль лицом к лицу сталкивается со встречным потоком, и для того, чтобы понять, насколько эффективно машина преодолевает бесконечную воздушную преграду, придумали достаточно эфемерную, но прижившуюся величину — коэффициент лобового сопротивления. Этот показатель относительный и его нужно с чем-то сравнивать, поэтому господа учёные выбрали «эталон». И это не какая-то хитроумная фигура, а самый обычный цилиндр. Он должен быть такого же диаметра, как и самая широкая часть машины и сопротивление которое он встречает при движении принято считать равным 1. И вот когда сопротивление металлической «колбасы» известно, в такие же условия помещают тестируемый автомобиль. И если машина встречает вдвое меньшее сопротивление воздуха, то коэффициент её лобового сопротивления будет равен 0,5. Но сейчас такой показатель считается практически «провальным». Хотя многие представители «кирпичной» аэродинамики любимы и уважаемы на дорогах. Коэффициент лобового сопротивления брутального Gelandewagen, например, составляет целых 0,54. Для сравнения, самый аэродинамичный на сегодняшний день автомобиль может похвастаться значением 0,189. Это футуристичное творение концерна VAG — Volkswagen XL1.

    От чего зависят аэродинамические показатели?

    На самом деле, факторов может набраться на пару полноценных книг. Но выделить основные категории все таки можно:

    • геометрия передней части;
    • геометрия боков;
    • геометрия задней части;
    • геометрия днища;
    • шероховатость поверхностей.

    Для того, чтобы машина встречала меньшее сопротивление воздуха, важно, чтобы его потоки обтекали автомобиль максимально плавно. При встрече с препятствием воздушный поток сначала сопротивляется, а потом всё же разделяется. Одна его часть минует преграду сверху, другая — снизу, а третья и четвёртая части — сбоку. Представьте, что воздух вокруг машины — это горизонтальные ниточки с пружинами по всей длине. Когда автомобиль въезжает в это полосатое пространство происходит вот что: сначала нужно заставить преграду расступиться. Чем больше площадь участка который первым встретился с эластичным препятствием, тем большее пружин придётся сжать одновременно для того, чтобы продолжить движение. Когда это случилось, нитки начинают постепенно распределяться по кузову и днищу.

    Пружины начинают сжиматься дальше, и за счёт этого нити поднимаются по решётке радиатора пока не доберутся до капота. Там обычно есть вполне себе внушительная ступенька, поэтому пружине надо резко сжаться ещё. Затем настаёт очередь ветрового стекла, которое заставляет витки напрячься ещё больше. Так продолжается до тех пор, пока кузов не начнёт сглаживаться и у пружины не появится место для того, чтобы разжаться до нормального состояния. Если линия крыши постепенно заваливается и перетекает в багажник, воображаемая пружина будет разжиматься постепенно, а не менее воображаемая нить будет спокойно очерчивать контур. А вот если сжатая пружина внезапно потеряет опору, то она сначала резко разожмётся, а потом будет колебаться до тех пор, пока не израсходует всю накопленную энергию. Такие хаотичные движения в момент внезапной потери опоры отлично визуализируют турбулентность. В момент её возникновения образуются потоки так называемого возмущённого воздуха, которые завихряются и, тем самым, создают область пониженного давления. Самый простой пример зоны повышенной турбулентности — конец прицепа фуры. Можно физически ощутить, как туда «затягивает», если проехать мимо. Ещё из курса школьной физики известно, что любой предмет стремиться двигаться туда, где давление меньше. Этим и обусловлен такой неприятный эффект. Но если с соседями по потоку всё понятно, то о собственноручно генерируемом «вакууме» многие забывают. Если воздушный поток внезапно оборвался позади вашей машины, то возникшая турбулентность будет буквально засасывать вас обратно, препятствуя движению вперёд.

    А ещё стоит учесть, что современные автомобили по своей геометрии отдалённо напоминают форму крыла самолёта.

    Днище вашего автомобиля достаточно плоское, и поэтому турбулентных потоков возникает относительно немного, чего не сказать о верхней части кузова. Это значит, что над крышей давление воздуха меньше, чем под колёсами. От этого автомобиль немного приподнимается над дорогой и чем дорожный просвет больше, тем сильнее этот эффект. Самолёты похожим образом опираются на воздух и генерируют подъёмную силу из разницы давлений. На машине вы, конечно, не взлетите, но о таких шутках воздуха лучше не забывать, особенно когда вы едете быстро.

    Как аэродинамика влияет на поведение автомобиля

    Аэродинамика начинает работать тогда, когда автомобиль сдвигается с места, но на низких скоростях ощутить это практически невозможно. Но чем быстрее вы будете двигаться, тем большее влияние на машину будет оказывать окружающая среда.

    Чем быстрее вы едете, тем шумнее становится в салоне. И гудят не только покрышки. Ко всем сопутствующим ежедневной езде звукам добавляются ещё и аэродинамические шумы. Всё гудение и кряхтение, раздающееся вокруг — это звук, с которым воздух «срывается» с кузова автомобиля, а потом «бьётся» в стёкла и двери. Чем быстрее вы будете ехать, тем большее количество воздуха будет с шумом «утекать» со стоек, зеркал и других излишне выступающих частей экстерьера, отсюда и нарастающий шум.

    Разгон

    Неспроста я успела обозвать воздушную массу киселём. Ведь воздух правда всеми силами сопротивляется передвижению в нём. Работает это примерно так: сила сопротивления воздуха увеличивается пропорционально квадрату скорости, а это значит, что, при прочих равных, если вы ускоритесь с 60 до 70 км/ч, сила сопротивления вырастет примерно на 35%, а если разогнаться до 100 км/ч — на 180%. Получается, что чем быстрее вы едете, тем больше машине требуется мощности на преодоление воздушной преграды. Соответственно, на высоких скоростях может значительно вырасти потребление горючего, а разгон при этом серьёзно «просядет», даже если номинальный запас мощности мотора не исчерпан.

    Управляемость

    На управляемость сильно влияет подъёмная сила, которая возникает под днищем вашей машины. На маленьких скоростях вес автомобиля больше, чем воздействие воздуха снизу, но на скоростях выше городских вы можете почувствовать, что машина начала по-другому управляться и очень уж нервно реагировать, например, на боковые порывы ветра. Это происходит потому, что кузов чуть приподнялся над дорогой, и часть веса машины приняла на себя своеобразную воздушную подушку. Поэтому пятно контакта колёс с дорогой стало чуть меньше, от этого и неприятная нестабильность в управлении. У всех автомобилей эта «критическая» скорость разная. Кто-то «взлетает» на 100 км/ч, а кому-то и скорость 210 не страшна. Это зависит и от геометрии кузова, веса самой машины и от того, что автомобиль может противопоставить подъёмной силе.

    Зачем нужны спойлеры

    Если уж мы никуда не можем деться от воздуха и его капризов, то стоит попробовать обратить его способности во благо. Так думали автомобилестроители раньше и продолжают думать сейчас. Главными новаторами и идейными вдохновителями как всегда являются спортивные подразделения автомобильных концернов. Там и с формой днища изощряются, и специальные обвесы изготавливают, и выхлопную системы в технике кружев Ришелье изобретают. Но все эти эффективные инновации вместить в одну серийную гражданскую машину не получится — больно уж дорого и сложно. Приходится выбирать самый простой, надёжный и действенный способ скорректировать поведение машины в воздушном потоке. И если лобовое сопротивление и повышенные шумы можно побороть только полной перестройкой кузова, то со «взлётами» бороться можно иначе. Для этого подойдут передние сплиттеры и задние антикрылья (спойлеры). Сплиттер помогает уменьшить дорожный просвет и буквально отсечь часть воздуха, попадающего под машину на скорости. Это помогает снизить подъёмную силу.

    Спойлер же сглаживает поток воздуха, срывающийся с крыши и заднего стекла автомобиля. Но помимо «спрямления» потока, правильно подобранное антикрыло преобразует сопротивление воздуха в прижимную силу. Получается, что воздух встречается с поверхностью антикрыла под таким углом, что часть силы сопротивления направлена в сторону дорожного полотна. Благодаря жёсткому креплению спойлера к кузову, задней части автомобиля не остаётся ничего, кроме как прижаться к земле под воздействием потока воздуха. Это помогает сохранить управляемость, а на заднем приводе ещё и помогает реализовать мощность на ведущих колёсах. Кстати, передние антикрылья тоже есть, но только в мире профессионального автоспорта.

    Как видите, аэродинамика — вещь сложная. И подружиться с ней бывает непросто, даже имея почти безграничные ресурсы. Ведь даже крошечная ошибка в расчётах может привести к эффекту, который будет строго противоположен ожидаемому. Да, есть талантливые механики, которые могут преобразить автомобиль, приладив буквально пару планочек, но, по большей части, все незаводские навесные элементы скорее облагораживают внешность машины, а не её повадки. Давайте будем честными: все же мы любим глазами, а все атрибуты настоящего спорткара уж точно заставят проводить их обладателя взглядом.

    Александр Молоков/ автор статьи

    Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные с отечественным и зарубежным автопромом. Уверен вы найдете для себя немало полезной информации. С уважением, Александр Молоков.

    Понравилась статья? Поделиться с друзьями:
    Volog-damaz.ru
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: