Что такое турбина в автомобиле - Volog-damaz.ru

Что такое турбина в автомобиле

Блог пользователя DenWRX на DRIVE2. Основы турбо-наддува. Часть 1. Основные принципы работы турбо двигателя. Как известно, мощность двигателя пропорциональна количеству топливо-воздушной смеси попадающей в цилиндры. При прочих равных, двигатель большего объема пропустит через себя больше воздуха и, соответственно, выдаст больше мощн…

Что такое турбина в автомобиле

ЧТО ТАКОЕ ТУРБИНА И КАК РАБОТАЕТ ТУРБО МОТОР Часть 1.

Основы турбо-наддува. Часть 1.

Основные принципы работы турбо двигателя.

Как известно, мощность двигателя пропорциональна количеству топливо-воздушной смеси попадающей в цилиндры. При прочих равных, двигатель большего объема пропустит через себя больше воздуха и, соответственно, выдаст больше мощности, чем двигатель меньшего объема. Если нам требуется что бы маленький двигатель выдавал мощности как большой или мы просто хотим что бы большой выдавал еще больше мощности, нашей основной задачей станет поместить больше воздуха в цилиндры этого двигателя. Естественно, мы можем доработать головку блока и установить спортивные распредвалы, уеличив продувку и количество воздуха в цилиндрах на высоких оборотах. Мы даже можем оставить количество воздуха прежним, но поднять степень сжатия нашего мотора и перейти на более высокий октан топлива, тем самым подняв КПД системы. Все эти способы действенны и работают в случае когда требуемое увеличение мощности составляет 10-20%. Но когда нам нужно кардинально изменить мощность мотора — самым эффективным методом будет использование турбокомпрессора.

Каким же образом турбокомпрессор позволит нам получить больше воздуха в цилиндрах нашего мотора? Давайте взгянем на приведенную ниже диаграмму:

Рассмотрим основные этапы прохождения воздуха в двигателе с турбокомпрессором:

— воздух проходит через воздушный фильтр (не показан на схеме) и попадает на вход турбокомпрессора (1)
— внутри турбокомпрессора вошедший воздух сжимается и при этом увеличивается количество кислорода в единице объема воздуха. Побочным эффектом любого процесса сжатия воздуха является его нагрев, что несколько снижает его плотность.
— Из турбокомпрессора воздух поступает в интеркулер (3) где охлаждается и в основной мере восстанавливает свою температуру, что кроме увеличения плотности воздуха ведет еще и к меньшей склонности к детонации нашей будущей топливо-воздушной смеси.
— После прохождения интеркулера воздух проходит через дросеель, попадает во впускной коллектор (4) и дальше на такте впуска — в цилиндры нашего двигателя.
Объем цилиндра является фиксированной величиной, обусловленной его диаметром и ходом поршня, но так как теперь он заполняется сжатым турбокомпрессором воздухом, количество кислорода зашедшее в цилиндр становится значительно больше чем в случае с атмосферным мотором. Большее количество кислорода позволяет сжечь большее количество топлива за такт, а сгорание большего количества топлива ведет к увеличению мощности выдаваемой двигателем.
— После того как топливо-воздушная смесь сгорела в цилиндре, она на такте выпуска уходит в выпускной коллекторе (5) где этот поток горячего (500С-1100С) газа попадает в турбину (6)
— Проходя через турбину поток выхлопных газов вращает вал турбины на другой стороне которого находится компрессор и тем самым совершает работу по сжатию очередной порции воздуха. При этом происходит падение давления и температуры выхлопного газа, поскольку часть его энергии ушла на обеспечение работу компрессора через вал турбины.

Ниже приведена схема внутреннего устройства турбокомпрессора:

В зависимоти от конкретного мотора и его компоновки под капотом, турбокомпрессор может иметь дополнительные встроенные элементы, такие как Wastegate и Blow-Off. Рассмотрим их подробнее:

Blow-off
Блоуофф (перепускной клапан) это устройство установленное в воздушной системе между выходом из компрессора и дроссельной заслонкой с целью недопустить выход компрессора на режим surge. В моменты когда дроссель резко закрывается, скорость потока и расход воздуха в системе резко падает, при этом турбина еще некоторое время продолжает вращаться по инерции со скоростью не соответствующей новому упавшему расходу воздуха. Это вызывает циклические скачки давления за компрессором и слышимый характерный звук прорывающегося через компрессор воздуха. Surge со временем приводит к выходу из строя опорных подшипников турбины, в виду значительной наргрузки на них в этих переходных режимах. БлоуОфф использует комбинацию давлений в коллекторе и установленной в нем пружины что бы определить момент закрытия дросселя. В случае резкого закрытия дросселя блоуофф сбрасывает в атмосферу, возникающий в воздушном тракте избыток давления и тем самым спасает турбокомпрессор от повреждения.

Wastegate:
Представляет собой механический клапан устанавленный на турбинной части или на выпускном коллекторе и обеспечивающий контроль за создаваемым турбокомпрессором давлением. Некоторые дизельние моторы используют турбины без вейстгейтов. Тем не менее подавляющее большинство бензиновых моторов обязательно требуют его наличия. Основной задачей вейстгейта является обеспечивать выхлопным газам возможность выхода из системы в обход турбины. Пуская часть газов в обход турбины, мы контролируем количество энергии газов которое уходит через вал на компрессор и тем самым управляем давлением наддува, создаваемое компрессором. Как правило вейстгейт использует давление наддува и давление встроенной пружины что бы контролировать обходной поток выхлопных газов.
Встроенный вейстгейт состоит из заслонки встроенной в турбинный хаузинг (улитку), пневматического актуатора и тяги от актуатора к заслонке.
Внешний гейт представляет собой клапан устанавливаемый на выпускной коллектор до турбины. Преимуществом внешнего гейта является то, что сбрасываемый им обходной поток может быть возвращен в выхлопную систему далеко от выхода из турбины или вообще сброшен в атмосферу на спортивных автомобилях. Все это ведет к улучшению прохождения газов через турбину в виду отсутствия разнонаправленных потоков в компактном объеме турбинного хаузинга.

Водяное и маслянное обеспечение:
Шарикоподшипниковые турбины Garrett требуют значительно меньше масла чем втулочные аналоги. Поэтому установка маслянного рестриктора на входе в турбину крайне рекомендована если давление масла в вашей системе привышает 4 атм. Слив масла должен быть заведен в поддон выше уровня масла. Поскольку слив масла из турбины происходит естественным путем под действием гравитации, крайне важно что бы центральный картридж турбины был ориентирован сливом масла вниз.
Частой причиной выхода из строя турбин является закоксовка маслом в центральном картридже. Быстрая остановка мотора после больших продолжительных нагрузок ведет к теплообмену между турбиной и нагретым выпускным коллектором, что в отсутствии притока свежего масла и поступления холодного воздуха в компрессор ведет к общему перегреву картриджа и закоксовке имеющегося в нем масла.
Для минимизации этого эффекта турбины снабдили водяным охлаждением. Водные шланги обеспечивают эффект сифона снижая температуру в центральном картридже даже после остановки двигателя, когда нет принудительной циркуляции воды. Желательно так же обеспечить минимум неравномерности по вертикали линии подачи воды, а так же несколько развернуть центральный картридж вокруг оси турбины на угол до 25 градусов.

Правильный подбор турбины является ключевым моментом в постройке турбо-мотора и основан на многих вводных данных. Самым основным фактом выбора является требуемая от мотора мощность. Важно также выбирать эту цифру максимально реалистично для вашего мотора. Поскольку мощность мотора зависит от количества топливо-воздушной смеси которая через него проходит за единицу времени, опредлив целевую мощность мы приступим к выбору турбины способной обеспечить необходимый для этой мощности поток воздуха.

Другим крайне важным фактором выбора турбины является скорость ее выхода на наддув и минимальные обороты двигателя на которых это происходит. Меньшая турбина или меньший горячий хаузинг позволяют улучшить эти показатели, но максимальная мощность при этом будет снижена. Тем не менее за счет большего рабочего диапазона работы двигателя и быстрого выход турбины на наддув при открытии дросселя в целом результат может быть значительно лучше, чем при использовании большей турбины с большой пиковой мощностью, но в узком верхнем диапазоне работы мотора.

Втулочные и шарикоподшипниковые турбины.
Втулочные турбины были самыми распространенными в течении долгого времени, тем не менее новые и более эффективные шарикоподшипниковые турбины используются все чаще. Шарикоподшипниковые турбины появились как результат работы Garrett Motorsport во многих гоночных сериях.
Отзывчивость турбины на дроссель очень зависит от конструкции центрального картриджа. Шарикоподшипниковые турбины Garrett обеспечивают на 15% более быстрый выход на наддув относительно их втулочных аналогов, снижая эффект турбо-ямы и приближая ощущение от турбо-мотора к атмосферному большеобъемнику.
Шарикоподшипниковые турбины так же требуют значительно меньшего потока масла через картридж для смазки пошипников. Это снижает вероятность утечек масла через сальники. Так же такие турбины менее требовательны к качеству масла и менее склонны к закоксовке после глушения двигателя.

Что такое турбонаддув

Такая вот небольшая с виду «улитка» — один из самых действенных способов увеличить мощность двигателя.

Несомненно, каждый из нас хоть раз в жизни замечал на обычном с виду автомобиле шильдик «turbo». Производители, как нарочно, делают эти шильдики небольшого размера и размещают в неприметных местах так, что непосвящённый прохожий не заметит и пройдёт мимо. А понимающий человек непременно остановится и заинтересуется автомобилем. Ниже приводится рассказ о причинах такого поведения.

Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов. Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? нас и поджидают проблемы.

Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.

Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?

Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.

Читайте также  Описание автомобиля лада гранта

Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Büchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов. Проще говоря, он придумал турбонаддув.

Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.

В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.

Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.

Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.

, скорость вращения турбины может достигать 200 тысяч оборотов в минуту, , температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.

По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.

Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.

Почти избавиться от турбоямы помогает схема с последовательным наддувом, когда на малых оборотах двигателя работает небольшой малоинерционный турбокомпрессор, увеличивая тягу на «низах», а второй, побольше, включается на высоких оборотах с ростом давления на выпуске. В прошлом веке последовательный наддув использовался на суперкаре Porsche 959, а сегодня по такой схеме устроены, например, турбодизели фирм BMW и Land Rover. В бензиновых двигателях Volkswagen роль маленького «заводилы» играет приводной нагнетатель.

На рядных двигателях зачастую используется одиночный турбокомпрессор (пара «улиток») с двойным рабочим аппаратом. Каждая из «улиток» наполняется выхлопными газами от разных групп цилиндров. Но при этом обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах

Но чаще по-прежнему встречается пара одинаковых турбокомпрессоров, параллельно обслуживающих отдельные группы цилиндров. Типичная схема для турбомоторов, где у каждого блока свой нагнетатель. Хотя двигатель V8 фирмы M GmbH, дебютировавший на автомобилях BMW X5 M и X6 M, оснащён перекрёстным выпускным коллектором, который позволяет компрессору получать выхлопные газы из цилиндров разных блоков, работающих в противофазе.

Заставить турбокомпрессор работать эффективнее во всём диапазоне оборотов, можно ещё изменяя геометрию рабочей части. В зависимости от оборотов внутри «улитки» поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше. А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.

Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». Ну а установка турбины на бензиновые моторы позволяет превратить обычный с виду автомобиль в настоящую «зажигалку». Ту самую, с маленьким, едва заметным шильдиком «turbo».

Турбонаддув в автомобиле: принцип работы

В массовом сознании слова «турбо», «турбонаддув», «турбированный двигатель» прочно ассоциируются со спортивными машинами и мощными двигателями. При этом, немногие представляют себе устройство и принцип работы турбонаддува. Хотя ничего особенного сложного в нём нет.

Что такое турбонаддув в автомобиле

Турбонаддув это специальная система, которая закачивает (наддувает) дополнительный воздух в цилиндры двигателя. Такая система используется не только в автомобильных двигателях, но и в авиационных, тепловозных, корабельных, и многих других. Широкое распространение турбонаддува вызвано тем, что это очень простой и дешёвый способ повышения мощности двигателя. Турбировать можно почти любой автомобильный двигатель, даже если это изначально не предусмотрено конструкцией.

Устройство турбонаддува относительно простое:

  • турбокомпрессор;
  • охладитель воздуха;
  • набор патрубков;
  • выпускной коллектор;
  • ряд датчиков и клапанов.

Полный комплект не занимает много места, его установка не требует серьезной переработки силового агрегата. Поэтому поставить турбонаддув на свою машину может любой желающий. Цены на турбосистемы сильно разнятся, в зависимости от мощности, эффективности, фирмы-производителя.

Принцип работы турбонаддува

Принцип работы турбонаддува достаточно прост. Выхлопные газы, которые выбрасывает двигатель, попадают на турбину и придают ей вращение. Турбина, в свою очередь, передаёт крутящий момент компрессору, он засасывает воздух и сжимает его. После этого сжатый воздух направляется в цилиндры двигателя. Опционально в эту схему вносится промежуточный охладитель воздуха — интеркулер. Он снижает температуру сжатого компрессором воздуха, соответственно уменьшая его объём. Это избавляет от неприятных эффектов вроде детонации, и повышает общую эффективность системы.

Смысл закачивания дополнительного воздуха становится ясен, если вспомнить принцип работы двигателя внутреннего сгорания. В его цилиндрах сгорает топливо-воздушная смесь, этот процесс толкает поршень, который проворачивает коленвал. Но, для эффективного сгорания смеси важно соблюдать правильное соотношение топлива и воздуха, поэтому нельзя повысить мощность просто добавив в смесь больше топлива. Вместе с увеличением количества топлива нужно увеличивать и количество воздуха.

Это можно сделать увеличив объём цилиндра, чтобы в него помещалось побольше воздуха. Но можно пойти другим путём — повысить плотность воздуха, загоняемого в цилиндры. Тогда с той же единицы рабочего объёма двигателя можно снимать ощутимо большую мощность. Хороший пример — спорткары, где каждый литр объёма может выдавать более 150 л.с. Конечно, помимо турбонаддува там используют ещё массу ухищрений. Но вполне реально получить 105-115 л.с. на литр с помощью одного только турбирования.

Что такое турбояма или турболаг

Принцип работы турбонаддува заключается в том, что двигатель «разгоняет» себя за счёт своей же работы. Эта особенность вызывает появление такой проблемы как турбояма или турболаг. Она проявляется в виде провала мощности, который появляется после резкого нажатия на педаль газа.

На заре турбированных моторов доходило до смешного — слишком резко и сильно нажав на педаль «газа», можно было полностью заглушить его. Сейчас сложная механическая и электронная начинка не даст этому произойти, но эффект турбоямы с неприятным провалом мощности всё равно остаётся. Особенно этим страдают дешевыё турбо-системы или неправильно установленные и настроенные.

Чтобы сгладить турболаг, используют хитрые электронные системы упреждающего наращивания оборотов. Они регистрируют резкие нажатия на педаль акселератора и раскручивают компрессор электроприводами, не дожидаясь, когда «проснётся» турбина. Цена таких решений, как правило, немаленькая, поэтому они встречаются в осномном только на спортивных авто.

Читайте также: Чем отличается турбина от компрессора и что лучше?.

Плюсы и минусы турбонаддува

Использовать турбонаддув имеет смысл только в том случае, если крайне необходимо придать автомобилю более динамичный, спортивный характер. Это действительно отличный способ минимальными затратами повысить мощность двигателя. Турбирование увеличивает максимальную скорость машины и улучшает ее динамику.

При этом турбонаддув позволяет обходиться меньшим объемом топлива по сравнению с двигателем такой же мощности и большего объёма . На эту деталь нужно обратить самое пристальное внимание, так как сам по себе турбонаддув не уменьшает, а увеличивает расход топлива. Потому что при росте количества воздуха в цилиндрах нужно соответствующе нарастить подачу топлива.

Читайте также  Схема подключения усилителя к колонкам в автомобиле

Помимо увеличенного расхода горючего, турбонаддув имеет следующие недостатки:

  • турбокомпрессор вращается на огромных оборотах и сильно нагревается, что отрицательно сказывается на его долговечности;
  • непредусмотренное изначально увеличение мощности усиливает износ всех частей двигателя;
  • турбонаддув предъявляет повышенные требования к качеству топлива и моторных масел;
  • турбирование включает в себя изменения настроек работы двигателя, фаз газораспределения;

Читайте также: Что такое турботаймер и для чего он нужен.

Так ли страшна турбина? Как правильно ездить с турбомотором и сколько может стоить ремонт

В России панически боятся турбированных моторов, предпочитая менее мощные и эффективные «атмосферники». Разбираемся, как не «убить» турбину раньше срока и во сколько встанет ее обслуживание или замена.

В нашей прошлой публикации мы уже сравнивали турбированный и атмосферный моторы, пытаясь понять, в чем их отличие и какой из них лучше выбрать. Допустим, что вы уже приобрели машину с наддувным двигателем или вот-вот собираетесь ее купить.

Как устроена турбина?

В общем-то, турбокомпрессор устроен просто. Главная деталь — это картридж. Внутри него размещается вал, а с двух противоположных концов к этому валу прикреплены турбинные колеса. Для того чтобы вал нормально вращался и не грелся, к нему под давлением подается моторное масло. Также к картриджу идет и трубка с антифризом для дополнительного охлаждения.

По бокам к корпусу картриджа прикреплены две «улитки» — горячая и холодная, внутри которых вращаются турбинные колеса. В горячую поступают выхлопные газы, раскручивают колесо, а затем «улетают» в выхлопную трубу через боковое отверстие улитки. Турбоколесо в холодной улитке всасывает чистый атмосферный воздух из впускного тракта и гонит его под сильным давлением дальше во впускной тракт к цилиндрам мотора.

Такова общая схема турбины, и мы не будем сейчас вдаваться в тонкости конструкции и различные варианты компоновки. Впрочем, стоит упомянуть новое поколение турбин, где масло подается под более низким давлением, а вал вращается в очень дорогих и сверхпрочных шариковых подшипниках.

Будет ли турбина «есть» масло?

Как мы уже говорили, без масла турбина работать не может. Обычно для герметизации вращающихся валов используют резиновые сальники (как в двигателе и коробке передач), но никакие сальники не смогут выдержать режимы работы турбины. Рабочая температура в ней достигает тысячи градусов, а частота вращения валов — сотен тысяч оборотов в минуту. Это намного более суровые условия, чем в моторе.

Валы и втулки в турбине подогнаны друг к другу с очень высокой точностью, и за счет этого масло не должно сочиться сквозь них, если турбина исправна. Но как только зазоры увеличиваются, масло через «холодную» часть турбины засасывает во впускной коллектор двигателя вместе с нагнетаемым воздухом. В таких случаях говорят, что «турбина гонит масло».

Из-за чего это происходит?

  • Естественный износ рабочих поверхностей валов и втулок.
  • Пониженное давление масла в двигателе: турбине не хватает смазки, и она сильнее изнашивается.
  • Повышенное давление масла в двигателе: масло попросту выдавливает через щели между втулками и валами.
  • Повышенное разрежение во впускном коллекторе — масло из турбины туда засасывает. В результате двигатели, где зазоры в цилиндрах близки к идеальным, угар масла из-за неисправной турбины может достигать нескольких литров на сотню километров. Вот этого-то и боятся сторонники безнаддувных моторов.

Каков ресурс турбины?

Здесь все очень индивидуально и зависит от стиля езды. В среднем на бензиновых двигателях ресурс турбины составляет 150 тысяч километров. На дизельных двигателях — 250 тысяч километров. Однако если ездить быстро, перекручивая двигатель и турбину, то ресурс может сократиться и до 100, и до 60 тысяч.

Как понять, что турбина просится в ремонт?

Главный признак скорой кончины турбины — синеватый дым из выхлопной трубы. Его появление означает, что в цилиндрах вместе с топливовоздушной смесью сгорает масло. Весьма вероятно, что во впуск это масло попало именно через турбину. Чтобы провести диагностику, не нужно обладать дипломом автослесаря. Достаточно иметь книжку по устройству автомобиля, где нарисовано расположение узлов под капотом, и немного свободного времени.

  • Найдите впускной патрубок, по которому воздух попадает в турбину и открутите его. Засуньте руку в «улитку» турбины и нащупайте вал, на котором закреплена крыльчатка. Покачайте его, и если есть люфт, то через щели наверняка сочится масло.
  • Найдите интеркулер и загляните внутрь. Если внутри есть масло, то турбина его «гонит». Чем больше масла, тем выше износ.

Еще иногда на приборной доске турбированных автомобилей есть указатели температуры и давления турбины. Соответственно температура не должна быть повышенной, а давление — пониженным.

Все эти советы обязательно нужно учесть, если вы покупаете турбированную машину с пробегом. Турбина — вещь дорогостоящая, и ее дефект может обернуться для вас, как для будущего владельца, крупными затратами.

Сколько стоит ремонт турбины и что в ней ремонтируется?

Когда турбина выходит из строя, можно пойти тремя путями.

Поменять турбину целиком. Чаще всего это совершенно лишняя затея, потому как масло гонит картридж, а корпуса-«улитки» остаются целыми и менять их не нужно. Замену турбины в сборе любят предлагать официальные дилеры и мультибрендовые сервисы, мастера на которых плохо разбираются в турбинах и ставят задачу получить с клиента максимум денег.

Почем? Cнятие, отсоединение трубок подачи масла и антифриза и установка турбины обратно стоит около 4 000 – 5 000 рублей.

Поменять картридж турбины. Под замену идет исключительно сам рабочий элемент турбокомпрессора — корпус с валом и крыльчатками. Поменять готовый картридж может даже мастер, который не специализируется на турбинах. Задача состоит в том, чтобы открутить несколько гаек крепежа, а потом закрутить их обратно.

Почем? Стоимость картриджа с заменой — около 15 000 – 20 000 рублей.

Отремонтировать картридж. Такая работа под силу исключительно мастерам специализированных автосервисов. Турбину разбирают полностью, моют ультразвуком, выявляют изношенные элементы и меняют их. Корпус картриджа растачивают на токарном станке, а затем всю конструкцию балансируют в два этапа, чтобы на скорости до 150 – 200 тысяч оборотов в минуту не было вибрации. Затем еще в картридж закачивают под давлением масло, чтобы проверить на герметичность.

Почем? Цена ремонта турбины зависит от массы факторов и колеблется от 7 000 до 25 000 рублей. Важно понимать, что если мастера называют серьезную сумму, то зачастую проще купить новую турбину.

Расценки на новые и восстановленные турбины разных производителей

Стоимость новой, руб.

Стоимость восстановленной, руб.

Стоимость аналогов, руб.

Volkswagen Passat (1998-2005), Audi A4 (1999-2008), Audi A6 (1998-2005)

Mits u bishi TD04

Volkswagen Crafter, Saab 9-5, Subaru Forester

дизельные Ford Mondeo (2007-2014), Ford S-Max (2007-2014)

Обратите внимание: автомобильные концерны практически никогда не разрабатывают турбины самостоятельно и чаще всего прибегают к помощи компаний, которые на этом специализируются (например, KKK, Borg Warner или Garrett). При этом та же турбина Garrett 760774-5003S под брендом Ford будет стоить в полтора-два раза дороже, чем под собственным именем. Мораль такова: прежде чем платить огромные деньги за «оригинальные» запчасти, узнайте, кто их поставляет производителю и заказывайте у них.

Как нужно ездить, чтобы продлить жизнь турбине?

Понятное дело, что чем активнее ездить, тем быстрее турбина придет в негодность. Но, помимо этой очевидной зависимости, есть еще несколько полезных советов.

  • Нужно охлаждать турбину. Чем активнее вы топтали педаль газа и «отжигали», тем дольше ее нужно охлаждать. Открывать капот и обмахивать «улитку» газеткой не нужно. Просто постойте пару минут на холостом ходу — масло будет циркулировать в моторе и турбине и заберет избыточное тепло. Вообще возьмите за правило перед парковкой ехать поспокойнее.
  • После долгого стояния в пробке не ускоряйтесь резко. Понятное дело, что вам хочется на свободу после заточения в заторе, но помните: пока вы стояли без движения, двигатель, турбина и интеркулер нагрелись, и если их сильно раскрутить, то нагрев будет чрезмерным или даже критическим.
  • Следите за температурой масла и антифриза и почаще их меняйте. Грязное масло и антифриз, который плохо отводит тепло, ускорят износ турбины.
  • Своевременно обслуживать двигатель. Здесь для каждой модели рекомендации будут индивидуальными. На современных фольксвагеновских моторах 1.4 TSI нужно следить за чистотой интеркулера, который быстро загрязняется, так как находится прямо во впускном коллекторе. На старых продольно расположенных 1.8 TSI требует регулярной очистки трубка подачи масла…

У каждого мотора есть свои нюансы. Если хотите максимально обезопасить себя от преждевременной смерти турбины, узнайте эти тонкости у специалистов. При покупке новой машины помогут мастера дилерского центра, а если берете подержанную, то обратитесь на специализированную СТО, которая занимается конкретно этой маркой. Также весьма полезным будет поговорить с мастерами автосервиса, ремонтирующими турбины.

Как работает турбина авто — ее устройство и эксплуатация

На сегодняшний день современный автопром активно внедрил технологию использования турбинных двигателей, и теперь без них представить современный автомобиль уже немыслимо.

Но не все имеют полное представление о том как работает турбина у авто, преимуществах турбины, рациональности установки и использования.

Итак, рассмотрим принцип действия турбины:

Двигатель состоит из цилиндров, в которых сгорает топливо того или иного вида. Мощность прямо пропорционально зависит от количества цилиндров.

Турбина предназначена для ускорения подачи топлива в камеру сгорания, чем больше будет его сгорать, тем больше потребуется воздуха. Этого можно достичь с помощью такой конструкции как у турбин – улиткооборазной.

Максимальные обороты агрегата составляют 240000 оборотов в минуту, а двигатель, к примеру, развивает только 10000. Чем больше нагнетается воздуха, тем больше сгорает горючей смеси и увеличивается мощность, что приводит к увеличению скорости.

Как правильно эксплуатировать изделие:

• Монтаж катализатора осуществляется очень тщательно, во избежание появления трещин от механического воздействия;

• Необходимо систематическая замена фильтрующих элементов, с целью недопущения прямого попадания пыли, песка, грязи;

Читайте также  Почему разряжается аккумулятор на автомобиле

• Не рекомендуется длительное время ездить на повышенных оборотах, с целью недопущения перегрева и выхода со строя;

• Не допускать агрессивное использование турбины на дорогах городского значения, уберегая себя и других участников от дорожно-транспортных происшествий.

Новинкой стало использование двух турбин на одном двигателе, а моторы стали битурбированными. Сила «железного коня» увеличится вдвое, но есть и неприятный исход, так как при остановке нагнетателя, коленвал до полной остановки вращается без смазочной жидкости, что может привести в ускоренному износу.

Катализаторы устанавливаются абсолютно на все транспортные средства, и без того достаточно мощны. Владелец машины может в любой момент демонтировать ускоритель на любом сервисном центре.

Положительная сторона турбин:

• Быстрота ускорения и набора скорости, приёмистость;

• Уникальность звучания катализатора;

• Возможность самовыражения в кругу знакомых.

Отрицательная сторона:

• Повышенное потребление топлива;

• При отсутствии опыта шансы совершить аварию увеличиваются в несколько раз;

• За лихачество на дорогах существенные штрафные санкции.

Турбинный механизм состоит из: крыльчатки-турбины, вала, непосредственно корпуса. Инженеры часто употребляют такое слово как турболаг – это период (яма) между моментом нажатия на акселератор и нагнетанием воздуха турбиной.

С данной проблемой на сегодняшний день успешно борются путём монтажа в ускоритель двух клапанов: для нагнетания воздуха и для выпуска отработанных газов.

Ограниченный ресурс службы был продлён с помощью замены материала для изготовления шариков подшипника на керамику, способную выдерживать перепады температурных режимов, огромную частоту вращения, общая масса изделия снижена на 20 %.

С целью достижения максимального использования нагнетающегося воздуха, специалистами разработано устройство под названием интеркулер, задача которого состоит в том, чтобы охлаждать нагнетаемый воздух, тем самым повышая эффективность работы компрессора.

Автопрому известны компрессоры трёх видов: центробежный, роторный, двухвинтовой, которые отличаются системой подачи воздуха в мотор. Кулачковый вал применяется роторным и двухвинтовым компрессоры, а центробежный – крыльчатку.

Роторный компрессор имеет огромные габариты, и как правило размещён над двигателем, выступая за капот. Фанаты дрэгстеров и роддеров приобретают такие установки.

Двухвинтовой нагнетатель более практичен и компактен, но ввиду своей конструкции цена выше, чем у «братьев».
Центробежный катализатор эффективен и востребован, по сравнению с родственниками. Лёгок, компактен, практичен в установке в передней части мотора, заставляющий прохожих оборачиваться слыша такой прекрасный свист.

Признаки поломки агрегата:

Наличие белого дыма в выхлопной трубе автомобиля, резкое падение мощности, существенное потребление моторного масла двигателем – это первые симптомы, свидетельствующие о необходимости поездки на сертифицированный сервис технического обслуживания для устранения поломки и предотвращения появления новых.

Могут подлежать замене или профилактике: подшипники и уплотнительные кольца, пропускающие потоки масла, преобразующиеся в белый дым. Осуществлять демонтаж следует очень аккуратно и только всю турбину в сборе.

Подводя итог, следует отметить, что устанавливать или нет турбину решать конечно только собственнику транспорта, но учитывать указанные в статье рекомендации необходимо каждому, с целью недопущения возникновения ошибок и аварийности на дорогах.

7 главных минусов и 2 плюса турбомоторов

Чем турбомотор отличается от атмосферного?

Атмосферный мотор засасывает воздух в цилиндры под действием разрежения, которое возникает, когда поршень движется к нижней мертвой точке. В большинстве случаев давление в цилиндре в конце хода впуска чуть ниже атмосферного. И вот с этим количеством воздуха и осуществляется рабочий цикл мотора. Наддувный двигатель получает на входе в цилиндр воздух, сжатый компрессором до определенного давления, а потому его в цилиндр войдет больше, чем у мотора со свободным всасыванием. Больше воздуха — больше кислорода, а значит, и топлива сгорит больше, и мощность при том же рабочем объеме поршневой части будет выше (или мотор компактнее при сохранении мощности).

Поскольку воздух в компрессоре подогревается, температуру перед подачей в цилиндр желательно снизить. Это делает специальный охладитель — интеркулер. Компрессоры могут использоваться разных типов — и с приводом от коленвала, и волновые обменники давления, но наиболее распространен турбонаддув. Последний способ использует энергию выхлопных газов для вращения центростремительной турбины, а сидящее на том же вале колесо центробежного компрессора обеспечивает сжатие воздуха перед подачей в цилиндры.

Как видим, конструкция наддувного мотора сложнее, чем атмосферника. Отсюда и первый недостаток турбомоторов.

1. Низкая надежность

Наддувные двигатели состоят из большего числа агрегатов, а надежность многокомпонентной системы всегда ниже, чем у более простой. Нагрузки на детали больше из-за большей литровой мощности. Да и конструкционные материалы в автомобильной промышленности используются преимущественно недорогие. Это же вам не аэрокосмическая отрасль…

К примеру, у турбокомпрессора есть система регулирования давления наддува, которая порой может заедать и отказывать. У редакционного Volkswagen Golf уже дважды при пробеге 80 000 и 100 000 км полностью теряла подвижность тяга привода клапана перепуска газов мимо турбины.

2. Недостаточный ресурс

Все мы вздыхаем по моторам-миллионникам конца прошлого века. Сейчас ресурс мотора в 400 000 км считается огромным достижением, а в прошлом он был нормой. Турбодвигатели современных автомобилей до таких пробегов не доживают. Турбокомпрессоры на бензиновых моторах редко ходят больше 150 000 км, а начавшая «хандрить» турбина вскоре может погубить и поршневую часть. Ведь турбокомпрессор может «выхлебать» весь запас моторного масла — в поддоне и поршневой части ничего не останется.

А еще многие производители с целью сэкономить «апгрейдят» атмосферные моторы до турбонаддувных, не особо заморачиваясь усилением некоторых деталей. Соответственно, высокие нагрузки на поршневую часть при небольшом усилении конструкции приводят к снижению ресурса.

3. Необходимость более частого и высококвалифицированного обслуживания

Многие производители для своих моделей с турбомоторами снизили периодичность ТО с 15 000 до 10 000 км. Так поступили, к примеру, Geely и Haval.

Наддувный мотор сложнее в обслуживании и особенно в диагностике. У него гораздо больше количество дополнительных соединений в системе турбонаддува. Потерять герметичность могут: подвод и отвод воздуха, подвод и отвод отработанных газов, системы подачи масла под давлением и его слива, а также подачи охлаждающей жидкости. Все это требует дополнительного внимания и опыта у сервисмена во время ТО.

4. Дорогой ремонт

Ремонт наддувного мотора всегда обходится дороже. Даже если турбокомпрессор в ремонтной фирме и не трогали, то прайс на восстановление двигателя все равно выше. Просто потому, что разбирать-собирать все перечисленные выше системы дольше и сложнее. А если предстоит замена турбокомпрессора, то готовьтесь выложить от 60 000 руб. Восстановление узла может потребовать половину этой суммы.

5. Обязательно применять хорошее топливо и смазки

Все современные моторы довольно требовательны к качеству топлива и моторного масла. Но если атмосферник на некачественных жидкостях «умрет» не сразу, то жизнь форсированного наддувного мотора будет измеряться минутами. Кроме того, расход даже самого дорогого масла у наддувного мотора будет выше, чем у большинства атмосферников.

Отдельного разговора требует расход топлива. Любой маркетолог, желающий продать вам машину с турбомотором, будет уверять, что она экономичнее, чем автомобиль с атмосферным двигателем. В теории так и есть. Но ведь турбомашина — это «великий провокатор». Некоторые автомобилисты сознательно выбирают турбодвигатель, чтобы ездить напористо и агрессивно. В этом случае расход будет не меньше, а даже больше, примерно на 30%, чем у спокойного водителя. Для неторопливого водителя мощность турбомашины может показаться избыточной, а повышенные затраты на содержание, (частые ТО, дорогие бензин и масло) — неоправданными.

6. Необходимость дополнительного охлаждения

Недаром многие сигнализации имеют опцию «турботаймер». Это устройство позволяет не глушить разогретый турбомотор сразу после остановки машины, а дает двигателю поработать на холостом ходу для охлаждения — прежде всего турбины. Похожий алгоритм у некоторых мощных автомобилей штатно заложен в блок управления двигателем. Без этого в остановившейся, но раскаленной докрасна турбине масло закоксуется, нарушив герметичность уплотнений. В итоге значительно вырастет расход масла на угар.

7. Проблемы с ликвидностью

Обо всех вышеперечисленных неприятностях осведомлены, в той или иной степени, многие автолюбители. Именно поэтому большинство предпочтет на вторичном рынке машину с атмосферным двигателем. А заезженные «турбозажигалки» приобретать будут, в основном, молодые поклонники всех серий «Форсажа».

Впрочем, есть у турбомоторов и неоспоримые плюсы.

1. Отличная характеристика крутящего момента

Разгон автомобиля — хоть с механической коробкой передач, хоть с автоматом — очень зависит от того, насколько быстро мотор из режима холостого хода сможет достигнуть оборотов максимальной мощности. А мощность, как известно, пропорциональна произведению оборотов коленвала на крутящий момент. Именно поэтому нужно, чтобы мотор на как можно более низких оборотах выдавал большой крутящий момент.

Наддувный мотор проектируют так, что турбокомпрессор обеспечивает довольно высокое давление наддува очень «рано», при небольших оборотах коленвала. В результате мы получаем большой крутящий момент на небольших оборотах. Далее момент увеличивать нельзя во избежание чрезмерных нагрузок на детали мотора. Начинает работать перепускной клапан, направляя часть выхлопных газов в обход турбины. Так производительность турбокомпрессора ограничивается, а на кривой крутящего момента появляется горизонтальная полка. Вот за такую характеристику турбомоторов их и любят, особенно активные водители.

2. Низкий расход топлива

У атмосферного двигателя значительная часть энергии сгоревших газов теряется вместе с горячими выхлопными газами. Наддувный двигатель использует температуру и давление выпускных газов, срабатывая их в турбине. Меньше энергии пропадает зря, значит, больше используется для движения автомобиля. Но, повторюсь, при условии спокойной манеры вождения.

Турбодвигатели совершенствуются и захватывают все новые модельные ряды автомобилей самых разных производителей на всех континентах. Вначале они оккупировали дороги старушки Европы. Япония давно и массово загружает ими внутренний рынок. США и Корея немного более сдержанны в распространении турбированных двигателей. Зато Китай в последнее время массово пересаживается на турбонаддув. Так что за наддувными двигателями будущее. Если, конечно, их не вытеснят электрокары.

  • Самые надежные двигатели (из тех, что еще продаются) мы собрали тут.
Александр Молоков/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные с отечественным и зарубежным автопромом. Уверен вы найдете для себя немало полезной информации. С уважением, Александр Молоков.

Понравилась статья? Поделиться с друзьями:
Volog-damaz.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: